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Abstract. We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in
relativistic baryon chiral perturbation theory. Predictions for the Σ− charge radius and the Λ–Σ0 transition
moment are found to be in excellent agreement with the available experimental information. Furthermore,
the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.

1 Introduction

Hadrons are composite objects, characterized by certain
probe–dependent sizes. Their structure can be investi-
gated by use of electron scattering (or the inverse process).
The electromagnetic structure of the proton and the neu-
tron has been investigated over decades, the present status
of the data is e.g. discussed in [1]. In the non–perturbative
low–energy region of QCD, baryon chiral perturbation
theory can be used to calculate these form factors. In a
recent paper [2] we have shown that relativistic baryon chi-
ral perturbation theory (employing the so–called infrared
regularization of [3]) supplemented by explicit vector me-
son contributions allows for a fairly precise description of
these fundamental quantities for photon virtualities up to
Q2 � 0.4 GeV2. The extension of these considerations
to the three–flavor case is interesting for various reasons.
First, the charge radius of the Σ− has recently been mea-
sured [4,5] and thus gives a first glimpse of an electric
hyperon form factor. Second, chiral SU(3) can be subject
to large kaon/eta loop corrections, and the form factors
offer another window to study the corresponding conver-
gence properties. They might thus indicate whether or not
the strange quark can be considered light and lead to a
better understanding of SU(3) flavor breaking. Since the
chiral expansion of the form factors is well under con-
trol in the two–flavor case, one can expect to encounter a
reasonably well–behaved series also in the presence of the
strange quark. This expectation is borne out by the results
presented in this paper. Third, one can also address some
questions concerning strangeness in the nucleon, more pre-
cisely, the role of kaon loops which in simple models let one
expect sizeable contributions of strange operators. Fourth,
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a knowledge of certain hyperon form factors is mandatory
to gain an understanding of kaon photo– and electropro-
duction off nucleons and light nuclei as measured at ELSA
and TJNAF. We will come back to most of these topics
in the present manuscript. In addition, these form fac-
tors have already been calculated in the so–called heavy–
baryon approach [6,7], which is a particular limit of the
regularization procedure employed here. A direct compari-
son with the results of that approach can shed further light
on the dynamics underlying the non–perturbative baryon
structure, in particular the role of recoil corrections. As
a final by–product, we can also readdress the issue of the
convergence of the chiral expansion for the magnetic mo-
ments, which is much discussed in the recent literature
[8–13].

The manuscript is organized as follows. In Sect. 2 we
briefly define the baryon form factors and the correspond-
ing electromagnetic radii. The formalism to obtain the
one–loop representation of the form factors is given in
Sect. 3. We heavily borrow from [2] and omit all lengthy
formulae. The results are presented and discussed in
Sect. 4. Section 5 contains a short summary and outlook.

2 Baryon form factors

The structure of ground state octet baryons (denoted by
‘B’) as probed by virtual photons is parameterized in
terms of two form factors each,

〈B(p′) | Jµ |B(p)〉 = e ū(p′)
{
γµF

B
1 (t) +

iσµνq
ν

2mB
FB

2 (t)
}

×u(p) ,
B = p, n, Λ,Σ±, Σ0, Ξ−, Ξ0 , (2.1)

with t = qµq
µ = (p′ − p)2 the invariant momentum trans-

fer squared, Jµ the quark vector current, Jµ = q̄Qγµq
(Q is the quark charge matrix and qT = (u, d, s)), and
mB the respective baryon mass. In electron scattering t is
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negative and it is often convenient to define the positive
quantity Q2 = −t > 0. F1 and F2 are called the Dirac
and the Pauli form factor, respectively, with the normal-
izations FB

1 (0) = QB , FB
2 (0) = κB . Here κB denotes the

anomalous magnetic moment. Equation (2.1) has to be
generalized for the Λ–Σ0 transition form factors which
are defined according to

〈Σ0(p′) | Jµ |Λ(p)〉
= e ū(p′)

{(
γµ − mΣ0 −mΛ

t
qµ

)
FΛΣ0

1 (t)

+
iσµνq

ν

mΛ+mΣ0
FΛΣ0

2 (t)
}
u(p) (2.2)

(see also [14]). The form of the generalized Lorentz struc-
ture accompanying FΛΣ0

1 (t) is required by current conser-
vation (which becomes obvious by contracting (2.2) with
qµ and applying the Dirac equation). Different definitions
which all reduce to (2.1) for mΣ0 → mΛ are possible,
however, the one given here is preferable because it still
requires the normalization FΛΣ0

1 (0) = 0. One also uses
the electric and magnetic Sachs form factors,

GE(t) = F1(t) +
t

4m2
B

F2(t) , GM (t) = F1(t) + F2(t) ,

(2.3)
which are the quantities we will consider in the following.
The slope of the form factors at t = 0 is conventionally
expressed in terms of a radius 〈r2〉1/2,

F (t) = F (0)
(
1 +

1
6
〈r2〉 t+ . . .

)
(2.4)

(F being a genuine symbol for any of the four electromag-
netic baryon form factors), and the mean square radius of
this charge distribution is given by

〈r2〉 = 4π
∫ ∞

0
dr r2ρ(r) =

6
F (0)

dF (t)
dt

∣∣∣∣
t=0

. (2.5)

Equation (2.5) can be used for all form factors except for
the electric ones of the neutral baryons which vanish at
t = 0. In these cases, one simply drops the normalization
factor 1/F (0) and defines e.g. the neutron charge radius
via

〈(rn
E)

2〉 = 6
dGn

E(t)
dt

∣∣∣∣
t=0

. (2.6)

3 Formalism

In this section, we spell out the details necessary to ex-
tend the SU(2) calculation of [2] to the three–flavor case.
We work in relativistic baryon chiral perturbation theory,
employing infrared regularization (IR). For details on this
procedure, we refer to [3,2]. Although the presence of dif-
ferent pseudo–Goldstone bosons with unequal masses en-
tails more general loop functions than those encountered
in [2], we refrain from tabulating these here. They will be-
come available in [15]. We only spell out the various terms

of the effective chiral Lagrangian underlying the calcula-
tion. Again we do not give the final formulae for the form
factors since these are rather lengthy, but instead refer to
[15].

3.1 Effective Lagrangian

The chiral effective Goldstone boson Lagrangian is given
by

L(2)
φφ =

F 2

4
〈uµu

µ + χ+〉 , (3.1)

where the octet of Goldstone boson fields is collected in
the SU(3) valued matrix U(x) = u2(x), and the chiral
vielbein is related to u via uµ = i{u†,∇µu}. ∇µ is the
covariant derivative acting on the pion fields including ex-
ternal vector (vµ) and axial (aµ) sources, ∇µU = ∂µU −
i
(
vµ + aµ

)
U + iU

(
vµ − aµ

)
. The mass term is included

in the field χ+ via the definitions χ = 2B(s + i p) and
χ+ = u†χu† + uχ†u, with s and p being scalar and pseu-
doscalar sources, respectively. s includes the quark mass
matrix, s = diag(mu,md,ms) + . . . . We will work in the
isospin limit, mu = md = m̂. B = |〈0|q̄q|0〉|/F 2 measures
the strength of the symmetry violation, and we assume
the standard scenario, B � F . Furthermore, 〈. . .〉 denotes
the trace in flavor space. The mass term leads to the well–
known lowest–order (isospin symmetric) mass formulae for
pions, kaons, and the eta, which enter the description of
the baryon form factors via loop contributions. We would
like to point out that the mass differences between the
Goldstone bosons yield the leading–order SU(3) break-
ing effect for these form factors. For numerical evaluation,
we will use Mπ = 139.57 MeV, MK = 493.68 MeV (the
charged pion and kaon masses), and Mη = 547.45 MeV.
Furthermore, it is legitimate to differentiate between dif-
ferent decay constants Fπ, FK , Fη in the treatment of the
chiral loops as these differences are of higher order. We
will use Fπ = 92.4 MeV, FK/Fπ = 1.22, Fη/Fπ = 1.3 (see
[16] and, for a more recent determination of FK/Fπ, [17]).
The main motivation for not using a common decay con-
stant is the comparison to the SU(2) results for the proton
and neutron form factors, where we do not want to sug-
gest an SU(3) effect which is only due to a numerically
different treatment of the pion loops.

The meson–baryon Lagrangian at leading order reads

L(1)
φB = 〈B̄ (iD/ − m)B〉 + D/F

2
〈B̄γµγ5 (uµ, B)±〉 , (3.2)

where the matrix–valued field B collects the ground state
octet baryons and D and F are the axial vector coupling
constants1. For these, we will use the values D = 0.80,
F = 0.46 extracted from hyperon decays [18], which obey
the SU(2) constraint D + F = gA = 1.26. Here, m de-
notes the average baryon mass in the chiral limit. To
this order, the photon field only couples to the charge

1 Here and in what follows, we employ a compact notation:
the D–type coupling refers to the anticommutator and the F–
type coupling to the commutator
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of the baryon. It resides in the chiral covariant derivative,
DµB = ∂µB+[Γµ, B], with the chiral connection given by
Γµ = 1

2

[
u†, ∂µu

] − i
2u

†(vµ + aµ)u − i
2u(vµ − aµ)u†.

Coupling constants from the second–order meson–
baryon Lagrangian are needed both at tree level and in
one–loop graphs. The following terms are required in our
calculation:

L(2)
φB = bD/F 〈B̄(χ+, B)±〉 (3.3)

+
b
D/F
6

8m
〈B̄σµν(F+

µν , B)±〉 + i

2
σµν

×
{
b9〈B̄uµ〉〈uνB〉 + b10/11〈B̄([uµ, uν ], B)±〉

}
.

Here, F+
µν = u†Fµνu+uFµνu

†, and Fµν = ∂µAν −∂νAµ is
the conventional photon field strength tensor. The bi are
the so–called low–energy constants (LECs) which encode
information about the more massive states not contained
in the effective field theory or other short–distance effects.
These parameters have to be pinned down by using some
data. In principle there is also a term ∼ b0 〈B̄B〉〈χ+〉
which amounts to a quark mass renormalization of the
common octet massm. This, however, cannot be disentan-
gled from m without further information (like the pion–
nucleon σ term), and it is sufficient for our purpose to
absorb this term in m. The couplings bD/F yield the lead-
ing SU(3) breaking effects in the baryon masses. Again,
these affect the form factors via various loop contribu-
tions. A best fit to the octet masses results in mN =
0.942 GeV, mΛ = 1.111 GeV, mΣ = 1.192 GeV, mΞ =
1.321 GeV (for m = 1.192 GeV, bD = 0.060 GeV−1,
bF = −0.190 GeV−1), compared to the experimental val-
uesmN = 0.939 GeV,mΛ = 1.116 GeV,mΣ = 1.193 GeV,
mΞ = 1.318 GeV (where the average masses within the
respective isospin multiplets have been taken). We con-
sider this accurate enough to put all baryon masses to
their experimental values in the numerical evaluation. In
any third–order calculation, however, no mass splitting is
present, hence the baryon mass parameter will always be
put to the average baryon mass m̄ = 1.151 GeV in this
case. It has been discussed in detail in [3,2] how to fix
the omnipresent mass scale λ which has to be introduced
in loop diagrams treated in dimensional regularization. It
was argued that in an SU(2) calculation, the nucleon mass
serves as a natural mass scale. Here we consider it natural
to set λ = m̄. The LECs b

D/F
6 parameterize the leading

magnetic photon couplings to the baryons and will be fit-
ted to the magnetic moments. Finally, the LECs b9/10/11
accompany second–order couplings of the various pseudo–
Goldstone bosons to baryons and enter the form factors
via (tadpole) loop contributions. Their values have been
estimated based on the resonance saturation hypothesis
in [9], however, the results used there do not satisfy the
SU(2) constraint 2(b10 + b11) = c4 ≈ 3.4 GeV−1. The
latter value is well–established, consistently determined
from resonance saturation [19] and fits to pion–nucleon
scattering [20,21]. The discrepancy between both deter-
minations can be traced back to different treatments of
the ∆ contribution in [9] and [19]. Adjusting this, we

will use the values b9 = 1.36 GeV−1, b10 = 1.24 GeV−1,
b11 = 0.46 GeV−1. As we would like to specify the un-
certainty of our predictions based on these estimates later
on, we attribute some errors to these LECs. As an indica-
tion we regard the change of a LEC when fitting it within
chiral amplitudes of different orders. This change is about
1.0 GeV−1 for c4 when going from second to third or-
der in πN scattering (see [22] for a second order fit). We
assume that this change should be a factor of 2 smaller
when proceeding from third to fourth order such that, due
to the different normalization of the SU(3) couplings, we
set ∆b9/10/11 = 0.25 GeV−1.

The only terms needed from the third order Lagrangian
are those entering the electric (charge) radii of the baryons,

L(3)
φB =

id101/102

2m

{
〈B̄

(
[Dµ, F+

µν ], [D
ν , B]

)
∓

〉 + h.c.
}
. (3.4)

d101, d102 have to be fitted to the charge radii of proton
and neutron.

At fourth order, two types of coupling constants ap-
pear which are of relevance for our calculation: two cou-
plings entering the magnetic radii, and seven couplings
proportional to a quark mass insertion contributing to the
magnetic moments,

L(4)
φB =

α1/2

8
〈B̄σµν

(
[F+

µν , B], χ+

)
∓

〉

+
α3/4

8
〈B̄σµν

(
{F+

µν , B}, χ+

)
∓

〉

+
β1

8
〈B̄σµνB〉〈χ+F

+
µν〉

+
b̃
D/F
6

8
〈χ+〉〈B̄σµν(F+

µν , B)±〉

−η1/2

2
〈B̄σµν

(
[Dλ, [Dλ, F+

µν ]], B
)

∓
〉 . (3.5)

As indicated by the notation, the terms ∼ b̃
D/F
6 only

amount to a quark mass renormalization of the leading
magnetic couplings and will therefore be absorbed into
b
D/F
6 . The LECs α1−4, β1, however, incorporate explicit
breaking of SU(3) symmetry in the magnetic moments and
will be fitted to the octet moments. η1/2 will be adjusted
to the magnetic radii of proton and neutron.

While there are, all in all, quite some LECs to be fitted
in order to describe all electromagnetic form factors, it is
important to point out that all these LECs are, on general
grounds, expected to be of order 1 (with the appropriate
mass dimensions in powers of GeV: as the baryonic scale
is of the order of 1 GeV, it is not necessary to normalize
the LECs appropriately)2.

2 We would like to point out that we have adopted the natu-
ral normalization for the SU(3) breaking terms in the magnetic
moments (by using the field χ+ proportional to the quark mass
matrix as defined above instead of a spurion diag(0, 0, 1)) which
is different from e.g. [8,9]. Numerically, however, this difference
amounts to a factor of 4M2

K ≈ 0.975 GeV2, hence apart from
a different mass dimension, this does not make any significant
difference
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(6*)

+

(5*)

+

(7*)

(9)

(10)

(5) (6)

+

(7) (8)

(4)

(11) (12)

Fig. 1. Feynman diagrams contribut-
ing to the electromagnetic form fac-
tors up to fourth order. Solid, dashed,
and wiggly lines refer to baryons, Gold-
stone bosons, and the vector source, re-
spectively. Vertices denoted by a heavy
dot/square/diamond refer to insertions
from the second/third/fourth order
chiral Lagrangian, respectively. Dia-
grams contributing via wave function
renormalization only are not shown

3.2 Chiral expansion of the baryon form factors

The chiral expansion of a form factor F consists of two
contributions, tree and loop graphs. The tree graphs com-
prise the lowest–order diagram with fixed coupling (the
baryon charge) as well as counterterms from the second–,
third–, and fourth–order Lagrangians. As one–loop graphs
we have both those with just lowest–order couplings and
those with exactly one insertion from L(2)

φB . The pertinent
tree and loop graphs are depicted in Fig. 1 (we have not
shown the diagrams leading to wave function renormaliza-
tion). We refrain from giving the explicit expressions here
but we mention that in the limit of a heavy strange quark,
we recover the SU(2) results of [2]. Also, the heavy–baryon
(HB) results of [6] can be obtained straightforwardly as
detailed in [2].

4 Results and discussion

We first discuss the issues concerning the magnetic mo-
ments and the electromagnetic radii in some detail. This
can be done within the ‘pure’ chiral expansion. Then we
turn to the full momentum dependence of the various form
factors for photon virtualities up to Q2 = 0.3 GeV2. To
this end we have to include vector mesons as active degrees
of freedom in a chirally symmetric manner.

4.1 Magnetic moments

The issue of convergence of the magnetic moments in chi-
ral perturbation theory (ChPT) has been discussed amply
in the literature, with or without inclusion of the decu-
plet [8–13]. We wish to compare the convergence behav-
ior in the heavy–baryon and the infrared regularization
scheme. Table 1 shows the best fits to the various orders.
The strategy is always to fit the seven experimentally
measured static moments (µΣ0 has not been measured
so far, in the theoretical predictions it is always given by
µΣ0 = (µΣ++µΣ−)/2 according to isospin symmetry) and
to predict the transition moment µΛΣ0 . At second and
third order, only the two leading–order couplings b

D/F
6

are free parameters, which results in best fits of varying

quality, whereas at fourth order the additional five cou-
plings allow for an exact fit of all seven static moments.
At second/third order, we have performed an unweighted
fit, hence simply minimizing χ2 =

∑
(µth − µexp)2. The

χ2 values given in Table 1 thus only serve to indicate the
relative quality of the fits.

It has frequently been noted before that the inclusion
of leading loop corrections in the magnetic moments tends
to worsen the leading–order results. This is seen here in
the third–order heavy–baryon results. Within the infrared
regularization scheme, however, it is even disputable which
contributions to count as third order: the leading contribu-
tions stem from diagram (6) in Fig. 1; summing up only
the 1/m–corrections to this graph yields the fit in the
column denoted by ‘O(q3)’ and shows an improvement
not only over the heavy–baryon result, but also over the
leading order fit. However, defining any one–loop diagram
with no higher–order insertions to be of third order, one
also has to include diagram (5) in Fig. 1 (which only con-
tributes at fourth order in strict chiral power counting).
These contributions are large and worsen the fit even over
the third–order heavy–baryon one, see the column denoted
by ‘O(q3)∗’. Especially the magnetic moments of proton,
neutron, and Ξ− are not described to any acceptable ac-
curacy in this case. We note furthermore that the fitted
values for the leading–order couplings vary considerably
among the different fits. Regarding these as indicators for
convergence, we again find that the ‘O(q3)’ result is much
closer to the fourth–order fit than the ‘O(q3)∗’ one.

At fourth order, we can compare the two predictions
for the transition moment µΛΣ0 . In both cases, we have
indicated the uncertainty of these predictions due to the
estimated uncertainties of the couplings b9/10/11, which
turns out to be much smaller than the experimental er-
ror of ∆µexp

ΛΣ0 = 0.08. It is remarkable that the predic-
tion for this physical quantity is so stable under varia-
tion of b9/10/11, although the fit values for the individual
couplings given in Table 1 vary considerably. While the
heavy–baryon result is about two standard deviations off,
the relativistic one (µΛΣ0 = 1.606 ± 0.008 n.m.) yields
exactly the experimental result (to be precise, experimen-
tally only |µΛΣ0 | is known). We note furthermore that,
while the values for the leading–order magnetic couplings
b
D/F
6 are fairly close in the two different schemes, those
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Table 1. Analysis of the magnetic moments (in units of nuclear magnetons (n.m.)) to
different chiral orders. The various best–fit values for the leading order magnetic couplings
b
D/F
6 and the SU(3) breaking couplings α1−4, β1 are given as well. b

D/F
6 are dimensionless,

α1−4, β1 are given in units of GeV−3. Errors for fourth–order results display the uncertainty
due to ∆b9/10/11. For the definition of χ2, see text

HB IR
O(q2) O(q3) O(q4) O(q3) O(q3)∗ O(q4) exp.

p 2.56 2.97 2.793 2.61 2.20 2.793 2.793 ± 0.000
n −1.60 −2.53 −1.913 −1.69 −2.59 −1.913 −1.913 ± 0.000
Λ −0.80 −0.45 −0.613 −0.76 −0.65 −0.613 −0.613 ± 0.004
Σ+ 2.56 2.21 2.458 2.53 2.41 2.458 2.458 ± 0.010
Σ0 0.80 0.45 0.649 0.76 0.65 0.649 —
Σ− −0.97 −1.32 −1.160 −1.00 −1.12 −1.160 −1.160 ± 0.025
Ξ0 −1.60 −0.78 −1.250 −1.51 −1.20 −1.250 −1.250 ± 0.014
Ξ− −0.97 −0.56 −0.651 −0.93 −1.33 −0.651 −0.651 ± 0.003
ΛΣ0 1.38 1.65 1.46 ± 0.01 1.41 1.81 1.61 ± 0.01 ±1.61 ± 0.08

bD
6 2.40 5.27 4.56 ± 0.24 3.65 5.18 4.21 ± 0.20

bF
6 0.77 2.92 1.65 ± 0.19 1.73 0.56 1.64 ± 0.18

α1 — — −1.00 ± 0.26 — — 0.32 ± 0.28
α2 — — 1.35 ± 0.29 — — −0.08 ± 0.18
α3 — — −0.85 ± 0.30 — — 2.14 ± 0.28
α4 — — 0.95 ± 0.22 — — 0.05 ± 0.19
β1 — — −2.46 ± 0.33 — — −3.39 ± 0.34

χ2 0.46 0.76 0.00 0.28 1.28 0.00

for the SU(3) breaking couplings show no similarity at
all. This clearly displays the fact that 1/m corrections to
the various loop diagrams are sizeable even beyond fourth
order.

4.2 Electric radii

The electric (or charge) radius of any baryon is, according
to (2.3), given by the sum of the Dirac radius and the
so–called Foldy term,

〈r2
E〉 = 〈r2

1〉 +
3κB

2m2
B

. (4.1)

Phenomenologically the Foldy term is hence well–known
for all ground state octet baryons from the experimental
information on the magnetic moments. What remains to
be predicted from any kind of theory or model, as inde-
pendent quantities, are the Dirac radii. We have therefore
always replaced the chiral representation of the Foldy term
by the exact value given by experiment. This is legitimate
at any chiral order, as the difference is always sublead-
ing. Doing otherwise would partly import the well–known
problematic convergence properties of the magnetic mo-
ments to the description of the electric radii3.

3 This can even entail, in our opinion, misleading conclu-
sions: the huge decuplet effects on the charge radii found in [7]
in some cases stem from the Foldy term, hence have nothing
to do with intrinsically electric properties of the baryons. It
should be noted that in a comparable SU(2) study, only minor
effects due to the ∆ resonance were found [23]

The chiral representations of the electric radii of the
baryon octet, both at third and fourth order, involve ex-
actly two low–energy constants, d101 and d102. These can
readily be fitted to the charge radii of proton and neu-
tron, such that all others can be predicted. Table 2 shows
these predictions for third– and fourth–order calculations,
both in the heavy–baryon and the infrared regulariza-
tion formalism. The fourth column shows the predictions
according to the fourth order relativistic calculation to-
gether with errors which reflect some theoretical uncer-
tainty: even with the Foldy term fixed, some uncertainty
inherited from the description of the magnetic moments
remains. Indeed, though kinematically suppressed (i.e. of
higher than fourth order in strict chiral power counting),
the loop corrections to the anomalous magnetic couplings,
see diagram (10) in Fig. 1, contribute to the Dirac radius.
We employ the values for b

D/F
6 obtained from the best

fit to the magnetic moments at fourth order, bD
6 = 4.21

and bF
6 = 1.64, see Table 1. In order to get an estimate

of the uncertainty due to these LECs, we again assume
an error of about half of the change when fitting them at
third and fourth order, thus assigning ∆b

D/F
6 = 0.5. Ta-

ble 2 shows that this uncertainty is (relatively) small, as
would be expected. We would like to stress however that
this error only indicates one particular effect. An estimate
of the complete uncertainty due to higher–order contri-
butions is hardly feasible (or, due to the appearance of
new unknown couplings, indeed impossible). Finally, the
uncertainties due to the experimental errors on the mag-
netic moments entering the Foldy term are yet one order
of magnitude smaller.
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Table 2. Predictions for the electric radii 〈r2
E〉 [fm2]. The various best–fit values

for the pertinent counterterms d101, d102 are given as well (in units of GeV−2).
The experimental values for the proton and neutron are taken from the dispersion
theoretical studies [24,25]. The errors for the relativistic fourth order predictions
display the uncertainty due to ∆b

D/F
6 . The errors for the experimental Σ− radius

values refer to statistical (first) and systematic (second) errors

HB IR
O(q3) O(q4) O(q3) O(q4) exp.

p 0.717 0.717 0.717 0.717 0.717
n −0.113 −0.113 −0.113 −0.113 −0.113
Λ 0.14 0.00 0.05 0.11±0.02 —
Σ+ 0.59 0.72 0.63 0.60±0.02 —
Σ0 −0.14 −0.08 −0.05 −0.03±0.01 —
Σ− 0.87 0.88 0.72 0.67±0.03 0.60±0.08±0.08 [5]

0.91±0.32±0.40 [4]
Ξ0 0.36 0.08 0.15 0.13±0.03 —
Ξ− 0.67 0.75 0.56 0.49±0.05 —
ΛΣ0 −0.10 −0.09 0.00 0.03±0.01 —

d101 −0.84 −0.34 −0.44 −0.15
d102 1.20 1.64 1.57 1.64

With regard to convergence only, i.e. exclusively to the
numerical changes when going from third to fourth order,
the infrared regularization scheme yields overall consid-
erable improvement over the heavy–baryon results, espe-
cially for Λ, Σ+, and Ξ0. This improvement can also be
seen in the behavior of the fitted values of d101 and d102,
also given in Table 2, which are more stable in the rela-
tivistic scheme. What is more important though is that
both the absolute values and the trends within the two
schemes are entirely different for some hyperons. E.g. for
the Σ− radius, the only hyperon radius on which exper-
imental information exists, the heavy–baryon values are
very stable at 0.87–0.88 fm2, but deviate sizeably from the
radius given by the SELEX Collaboration [5], 〈(rΣ−

E )2〉 =
0.60± 0.08(stat.)± 0.08(syst.) fm2 (the pioneering WA89
measurement [4] is not precise enough to favor any of the
theoretical predictions). In the relativistic scheme how-
ever, the third–order value is already within this error
range, with the fourth–order one even closer to the cen-
tral value. Similarly for the other charged hyperons Σ+

and Ξ−, the fourth–order corrections increase the third–
order predictions in the heavy–baryon case, but reduce
them in the relativistic scheme. We also note that only
the relativistic predictions show the hierarchy in the size
of the electric radii expected from naive quark model con-
siderations, 〈(rp

E)
2〉 > 〈(rΣ±

E )2〉 > 〈(rΞ−
E )2〉. The sizeable

difference between the Σ+ and Σ− radii at third order in
the heavy–baryon scheme is largely reduced in the rela-
tivistic results, leaving only a 10% effect at fourth order.
For the neutral hyperons, all predictions are consistent as
far as the signs of the radii are concerned (with the ex-
ception of the radius of the Λ–Σ0 transition form factor),
yielding positive radii for the Λ and Ξ0 hyperons, and a
negative radius for the Σ0. Quantitatively, the relativistic

fourth–order calculation predicts radii of a size very simi-
lar to that of the neutron for Λ and Ξ0, and a Σ0 radius
of about another factor of 3 smaller.

To conclude this section, we would like to comment on
the issue of SU(3) breaking in the electric radii. In con-
trast to the calculation of the magnetic moments to fourth
order, the electric radii to this order do not contain any
operators which break SU(3) at tree level (compare the
LECs α1−4, β1 in (3.5) in the magnetic sector), therefore
all SU(3) breaking effects are created ‘dynamically’ via
mass splittings in the loop diagrams. The leading (and
dominating) effect is the pion–kaon mass difference. We
remind the reader that SU(3) symmetry would give the
hyperon radii in terms of the proton/neutron radii ac-
cording to

〈(rΣ+

E )2〉 = 〈(rp
E)

2〉 ,
〈(rΣ−

E )2〉 = 〈(rΞ−
E )2〉 = 〈(rp

E)
2〉 + 〈(rn

E)
2〉 ,

2 〈(rΛ
E)

2〉 = −2 〈(rΣ0

E )2〉
= 〈(rΞ0

E )2〉 = − 2√
3

〈(rΛΣ0

E )2〉 = 〈(rn
E)

2〉 . (4.2)

It is obvious that SU(3) breaking due to the large kaon
mass changes this pattern considerably: exact SU(3) pre-
dicts 〈(rΣ+

E )2〉 > 〈(rΣ−
E )2〉 which is reversed in all four

ChPT results presented above. In addition, it changes the
sign of all charge radii for neutral hyperons. The size of the
additional SU(3) breaking due to the mass splitting in the
baryon octet, see diagrams (5∗)–(7∗) in Fig. 1, can be seen
by comparing the predictions at third and fourth order in
the relativistic framework, the change being mainly due
to these mass differences (in fact, in terms of strict chiral
power counting, this is the only new effect at fourth or-
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Table 3. Predictions for the magnetic radii 〈r2
M 〉 [fm2]. The

various best–fit values for the pertinent counterterms η1, η2

are given as well (in units of GeV−3). The errors display the
uncertainty due to ∆b9/10/11

O(q4) HB O(q4) IR exp.

p 0.699 0.699 0.699
n 0.790 0.790 0.790
Λ 0.30±0.11 0.48±0.09 —
Σ+ 0.74±0.06 0.80±0.05 —
Σ0 0.20±0.10 0.45±0.08 —
Σ− 1.33±0.16 1.20±0.13 —
Ξ0 0.44±0.15 0.61±0.12 —
Ξ− 0.44±0.20 0.50±0.16 —
ΛΣ0 0.60±0.10 0.72±0.10 —

η1 0.26±0.10 0.69±0.10
η2 −0.02±0.21 0.72±0.21

der apart from 1/m corrections to third order loops). The
net effect is a further moderate reduction of the charged
hyperon radii. Among the neutral particles, only the Λ ra-
dius shows a sizeable correction. Going to fifth order, one
would obtain a large amount of additional SU(3) break-
ing effects (e.g. in the meson–baryon coupling constants or
‘explicit’ breaking in the charge radii via contact terms)
none of which is quantifiable to sufficient accuracy. We
thus regard our (fourth–order relativistic) predictions as
the best one is ever likely to achieve in any ChPT ap-
proach.

4.3 Magnetic radii

As the electric radii, the magnetic radii at fourth order
include two parameters (labeled η1/2 in (3.5)) which can
be fitted to the respective proton and neutron data (taken
here from the dispersive analysis [24,25]) in order to yield
predictions for the hyperons. However, in contrast to the
electric case, here loops proportional to other rather
poorly known LECs (b9/10/11) contribute significantly. As
there are no further measurements of magnetic radii which
would allow to fit these, the most transparent thing to
do is to indicate the uncertainty following from this poor
knowledge. Table 3 shows these uncertainties, based on
∆b9/10/11 = 0.25 GeV−1 (which are assumed to be uncor-
related errors). Again, this is only one particular effect and
does not reflect all possible uncertainties due to higher–
order contributions. In addition, errors on these couplings
were also only roughly estimated, such that they could
even be larger.

Nevertheless, we consider the errors in Table 3 indica-
tive enough to state that the magnetic radii can be pre-
dicted only to much lower accuracy than the electric ones.
Given the sizeable uncertainties, there is no significant
discrepancy between the heavy–baryon and the relativis-
tic predictions (with the exception of the Σ0). The general
trend is an increase of most magnetic radii in the relativis-

tic scheme compared to the heavy–baryon results, where
the central values are surprisingly small for some hyper-
ons (Λ, Σ0). The values for the LECs η1/2, however, are
completely different. This indicates large SU(3) symmet-
ric loop contributions that have to be canceled by these
counterterms. This does not come as a surprise if one re-
members what is known about loop contributions to the
magnetic moments. Note that with regard to the values
for the SU(3) breaking terms in the magnetic moments
given in Sect. 4.1, none of the fourth–order couplings can
be fixed in agreement with both schemes. SU(3) breaking
is large, as a completely SU(3) symmetric treatment of the
magnetic form factors (moments and radii) would imply

〈(rΣ+

M )2〉=〈(rp
M )2〉 ,

〈(rΣ−
M )2〉=〈(rΞ−

M )2〉 =
µp〈(rp

M )2〉 + µn〈(rn
M )2〉

µp + µn
,

〈(rΛ
M )2〉=〈(rΣ0

M )2〉 = 〈(rΛΣ0

M )2〉 = 〈(rn
M )2〉 . (4.3)

In contrast to these, the values in Table 3 show no clear
pattern. The magnetic radius of the Σ− is remarkable in
being much larger than all other radii, electric or mag-
netic. Such an effect, albeit less dramatic, is also found
in some lattice studies, see e.g. [14]. (This study also pre-
dicts relatively small magnetic radii for Λ and Ξ− as we
do, though not for the Σ0.) As in the case of the elec-
tric radii, improvement of these predictions in the frame-
work of ChPT is hardly feasible as higher order corrections
would include numerous unknown SU(3) breaking effects.

4.4 Q2–dependence of the form factors

In [2] it was shown that the complete relativistic chiral
one–loop representation fails to describe the Q2–depen-
dence of the ‘large’ form factors (i.e. those not vanishing
at Q2 = 0) already at rather low Q2. As a remedy, it
was demonstrated that the inclusion of dynamical vector
mesons, used in an antisymmetric tensor representation
and coupled to nucleons/pions/photons in a chirally in-
variant fashion, yields a very good description of all elec-
tromagnetic nucleon form factors up to about 0.4 GeV2.
Certainly, in order to obtain reasonable predictions for
the Q2–dependence of the hyperon form factors, one has
to proceed likewise here. The necessary formalism and the
definitions of all pertinent couplings are presented in great
detail in [2]. Of course one has to assume SU(3) symmet-
ric vector meson couplings to the baryons, which are then
fully determined by the values for the vector meson nu-
cleon couplings as given in [24]. As these transform in the
same way as the contact terms, replacing part of the latter
by explicit vector meson contributions on tree level affects
in no way the predictions for the hyperon radii.

The fourth order results for the electric form factors
of proton and neutron, including vector meson effects, are
shown in Figs. 2 and 3, respectively, the former divided
by the dipole form factor. For comparison we show the
equivalent SU(2) results given in [2] and the dispersion
theoretical fits from [24,25]. In both cases the difference
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Fig. 2. The proton electric form factor in SU(3) (solid line)
and SU(2) (dashed line) relativistic baryon chiral perturbation
theory including vector mesons, divided by the dipole form fac-
tor. For comparison, we show the dispersion theoretical result
(dot–dashed line) and the world data available in this energy
range

0 0.1 0.2 0.3 0.4
Q

2
 [GeV

2
]

0

0.05

0.1

G
E

n (Q
2 )

Fig. 3. The neutron electric form factor in SU(3) (solid line)
and SU(2) (dashed line) relativistic baryon chiral perturbation
theory including vector mesons. Also given is the result of the
dispersion theoretical analysis (dot–dashed line). We only show
the more recent data as given in [29]

between the SU(2) and SU(3) descriptions is very small,
though the SU(3) one is slightly worse. From such small
differences one concludes that not much room is left for
a strangeness contribution via kaon loops, as simple me-
son cloud models seem to indicate. Strangeness as hidden
in the φ–meson component or from higher mass states
encoded in the value of the LECs d101/102 cannot be sep-
arated from the analysis presented here. To completely
disentangle the strangeness contribution to a given form
factor, a full flavor decomposition is necessary. For that,
one also has to calculate the singlet form factors since
the electromagnetic current is only sensitive to the octet
components.

Figure 4 shows the electric form factors of all charged
hyperons (those of the negative ones with sign reversed).
They all show a Q2–dependence qualitatively similar to
that of the proton charge form factor, the quantitative dif-
ference being due to their different sizes as determined by
the radii. In all cases, the vector meson effects contribute
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Fig. 4. Predictions for the electric form factors of the charged
hyperons Σ+ (dot–dashed line), Σ− (solid line), and Ξ−

(dashed line). For the latter two, the absolute value of GE(Q2)
is shown. For comparison, we also show the proton electric form
factor (long–dashed line)
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Fig. 5. Predictions for the electric form factors of the neu-
tral hyperons Λ (solid line), Σ0 (dashed line), Ξ0 (dot–dashed
line), as well as the Λ–Σ0 transition form factor (dotted line).
For comparison, we also show the neutron electric form factor
(long–dashed line)

a large part of the curvature which is far too small for
the proton in a purely chiral representation. The neutral
hyperon form factors are shown in Fig. 5 in comparison to
the neutron electric form factor. Similar to what was found
for the latter in [2], the vector meson effects largely can-
cel for all charge form factors of neutral hyperons. Apart
from the neutron, only the Λ–Σ0 transition form factor
shows significant curvature, the ones for Λ, Σ0, and Ξ0

are dominated by the radius term and display a nearly
linear behavior.

For the magnetic form factors, a problem occurs when
trying to transfer the procedure to include vector mesons
exactly from the SU(2) to the SU(3) case. In the former,
also loop corrections to the tree level diagrams including
vector meson exchange were calculated, in strict analogy
to loop corrections to the leading order magnetic couplings
at fourth order, see diagrams (10)–(12) in Fig. 1. However,
in contrast to the SU(2) case, these loop corrections are
large in SU(3), such that there is no reason to identify the
bare couplings with the ones determined in a dispersive
analysis. What is more, in contrast to the electric form fac-



B. Kubis, U.-G. Meißner: Baryon form factors in chiral perturbation theory 755

0 0.1 0.2 0.3 0.4
Q

2
 [GeV

2
]

0.7

0.8

0.9

1

1.1

1.2

1.3

G
M

p (Q
2 ) 

/ µ
p 

G
D
(Q

2 )

Fig. 6. The proton magnetic form factor in SU(3) (solid line)
and SU(2) (dashed line) relativistic baryon chiral perturbation
theory including vector mesons, divided by the dipole form fac-
tor. For comparison, we show the dispersion theoretical result
(dot–dashed line) and the world data available in this energy
range
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Fig. 7. The neutron magnetic form factor in SU(3) (solid line)
and SU(2) (dashed line) relativistic baryon chiral perturbation
theory including vector mesons, divided by the dipole form fac-
tor. For comparison, we show the dispersion theoretical result
(dot–dashed line) and the world data available in this energy
range, where the data points denoted by squares (instead of
circles) refer to the more recent measurements [30]. The older
data can be traced back from [24]

tors, such loops would lead to additional SU(3) breaking
effects in the magnetic radii, yielding largely different val-
ues compared to a strictly chiral analysis. To avoid these
problems, one should use vector mesons on tree level only
in an SU(3) analysis, producing predictions for the mag-
netic form factors in agreement with the chiral predictions
for the magnetic radii.

We only show the magnetic form factors of proton and
neutron divided by the dipole form factor, see Figs. 6, 7,
again compared to the SU(2) analysis in [2]. The proton
magnetic form factor proves to be worse above 0.2 GeV2

in the SU(3) case, much closer to the third order curve
given in [2] (which also does not include loop corrections
to vector meson couplings). The curvature in the SU(3)
calculation is slightly too small to meet the data above
0.2 GeV2. For the neutron, however, there is hardly any

difference between the two descriptions. The general ob-
servation for the hyperons (not displayed here) is that the
neutral ones, like the neutron, tend to have stronger cur-
vature, while the magnetic form factors of the charged hy-
perons are closer to a purely chiral description dominated
by the radius term, and probably suffer from a similar
deficit as the proton magnetic form factor.

5 Summary

We have studied the electromagnetic form factors of the
baryon octet in a manifestly Lorentz invariant form of
baryon chiral perturbation theory to one–loop (fourth) or-
der employing the so–called infrared regularization of loop
graphs. The pertinent results of our investigation can be
summarized as follows:

(1) We have argued that the chiral expansion of the mag-
netic moments in the relativistic scheme is ambiguous
at third order, such that no clear statement can be
made whether or not convergence is improved in com-
parison to the heavy–baryon scheme. At fourth order,
due to the presence of seven low–energy constants,
one can only predict the Λ–Σ0 transition moment,
µΛΣ0 = 1.61 ± 0.01 n.m., in stunning agreement with
the empirical value.

(2) To fourth order, only two LECs affect the electric
radii. These can be fixed from the measured neutron
and proton radii. Always using the empirical magnetic
moments in the Foldy term, we have shown that the
fourth order corrections to the electric radii are aston-
ishingly small, and so are the resulting uncertainties.
The prediction for the Σ− radius agrees with the re-
cent result from the SELEX Collaboration [5]. The
pion–kaon mass difference leads to sizeable deviations
from flavor SU(3) symmetry.

(3) The magnetic radii cannot be predicted so precisely.
Again, one finds large SU(3) breaking due to loop cor-
rections. In particular, the magnetic radius of the Σ−
is largest.

(4) For the electric form factors of the charged particles,
the pure chiral representation provides too little cur-
vature. With vector mesons included as in [2], the Q2–
dependence of various charged form factors is given up
to virtualities of Q2 = 0.3 GeV2, see Figs. 2, 4. For
the neutral particles we find in general a large can-
cellation of these vector meson contributions, and the
resulting form factors for the neutral hyperons dis-
play less curvature than the neutron one, see Figs. 3,
5. We do not observe any sizeable effects in the elec-
tric proton and neutron form factors when going from
SU(2) to SU(3). Again, the corresponding magnetic
form factors cannot be predicted so precisely.

In the future, it will be of interest to also calculate
the singlet form factors. This would allow one to perform
a flavor decomposition of the various form factors and in
particular to reanalyze the so–called strange form factors
of the nucleon, which are currently of great interest and
have been studied in the heavy–baryon limit only [26–28].
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